![eMSOT Das Bidl zeigt vier Messbereiche in Gewebe, deren Farbe von rot (100% Sauerstoff) bis grün (0% Sauerstoff) reicht.](http://www.helmholtz-muenchen.de/typo3temp/_processed_/csm_160728_eMSOT_348fa89080.jpg)
Neuherberg, 29. Juli 2016. Wie blickt man in den menschlichen Körper, ohne ihn aufzuschneiden? Die... Einen Königsweg, um den Sauerstoffgehalt in Gewebe sichtbar zu machen, schien es bislang nicht zu geben. Viele unterschiedliche Verfahren wurden ausprobiert, aber jedes hat seine eigenen Nachteile. In den vergangenen Jahren haben sich die Forschungsbemühungen auf diesem Gebiet auf optoakustische Methoden konzentriert. Diese, insbesondere die Multispektrale optoakustische Tomografie (MSOT), sind eines der Kerngebiete der Arbeit von Vasilis Ntziachristos.*
Komplexes Gewebe erschwert die Analyse
Theoretisch lässt sich mithilfe von MSOT auch zeigen, wie viel Sauerstoff in Blut enthalten ist. In der Praxis gibt es jedoch ein erhebliches Hindernis: Je tiefer ein Lichtstrahl in Gewebe eindringt, desto weniger intensiv wird er. Das liegt nicht nur daran, dass der Strahl durch jede Schicht Zellen gefiltert wird, die er durchquert. Hinzu kommt, dass unterschiedliche Zellstrukturen innerhalb des Gewebes verschiedene Eigenschaften aufweisen, die beeinflussen, wie Licht gestreut und absorbiert wird. Diese Einflüsse müssen in Betracht gezogen werden, um bei einer MSOT aus den akustischen Signalen der Zellen die richtigen Schlüsse zu ziehen. In der Vergangenheit haben verschiedene Wissenschaftlerinnen und Wissenschaftler versucht, zu berechnen, wie das Gewebe die Verbreitung des Lichts beeinflussen wird. „Gewebe ist aber optisch so komplex, dass dieser Ansatz bisher noch nicht flexibel auf optoakustische Bilder von Gewebe im lebenden Organismus angewendet werden konnte“, sagt Stratis Tzoumas, Erstautor eines Artikels im Fachmagazin „Nature Communications“, in dem die Wissenschaftlerinnen und Wissenschaftler ihren neuen Ansatz beschreiben.Eine neue Methode, Lichtverteilung in Gewebe zu beschreiben
Ntziachristos, Tzoumas und die anderen beteiligten Wissenschaftlerinnen und Wissenschaftler haben einen völlig anderen Ansatz entwickelt. Ihre eMSOT genannte Methode verzichtet von vornherein darauf, den Weg des Lichtes durch komplexes Gewebe zu berechnen. Stattdessen machen sich die Forscher die Entdeckung zunutze, dass sich das Spektrum des Lichts in Gewebe mithilfe einer kleinen Anzahl an Grundspektren beschreiben lässt. Diese sogenannten Eigenspektren – daher auch das „e“ in eMSOT – können vorab durch Computersimulationen ermittelt werden. Die Methode nutzt Daten eines konventionellen MSOT-Geräts in Kombination mit einem neuen Algorithmus. Dieser ist in der Lage, die Effekte der Lichtstreuung und –absorption innerhalb des Gewebes zu korrigieren und akkurate Bilder der Sauerstoffmenge innerhalb des Gewebes zu erstellen. Mithilfe von eMSOT waren die Wissenschaftler in der Lage, den Sauerstoffgehalt von Blut in lebendem Gewebe einen Zentimeter unter der Hautoberfläche zu messen. „Theoretisch können wir die Messtiefe noch vergrößern“, sagt Stratis Tzoumas. „Bei ungefähr drei Zentimetern gibt es allerdings eine Grenze. Irgendwann durchdringt das Licht das Gewebe einfach nicht mehr.“ Im Vergleich zu anderen optischen und optoakustischen Ansätzen beobachteten die Forscher bei eMSOT eine drastisch verbesserte Genauigkeit der Ergebnisse. Zusätzlich dazu, dass eMSOT ohne Eingriff in den Körper auskommt und weder auf radioaktive Strahlung noch auf Kontrastmittel angewiesen ist, liefert die Methode Bilder in höherer zeitlicher und räumlicher Auflösung als andere Techniken. „Informationen über die Menge an Sauerstoff in Gewebe sind für Forschung und Behandlung in vielen Bereichen enorm wichtig“, sagt Vasilis Ntziachristos. „Es ist gut möglich, dass eMSOT zum Bildgebungs-Goldstandard wird, sobald die Methode bereit für die klinische Anwendung ist.“Weitere Informationen
Tzoumas, S. et al. (2016): Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues, Nature Communications, DOI: 10.1038/ncomms12121 Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. Das Institut für Biologische und Medizinische Bildgebung (IBMI) erforscht In-vivo-Bildgebungstechnologien für die Biowissenschaften. Es entwickelt Systeme, Theorien und Methoden zur Bildgebung und Bildrekonstruktion sowie Tiermodelle zur Überprüfung neuer Technologien auf der biologischen, vorklinischen und klinischen Ebene. Ziel ist es, innovative Werkzeuge für das biomedizinische Labor, zur Diagnose und dem Therapiemonitoring von humanen Erkrankungen bereit zu stellen. Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.